miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo.

نویسندگان

  • Deena M Leslie Pedrioli
  • Terhi Karpanen
  • Vasilios Dabouras
  • Giorgia Jurisic
  • Glenn van de Hoek
  • Jay W Shin
  • Daniela Marino
  • Roland E Kälin
  • Sebastian Leidel
  • Paolo Cinelli
  • Stefan Schulte-Merker
  • André W Brändli
  • Michael Detmar
چکیده

The lymphatic vascular system maintains tissue fluid homeostasis, helps mediate afferent immune responses, and promotes cancer metastasis. To address the role microRNAs (miRNAs) play in the development and function of the lymphatic vascular system, we defined the in vitro miRNA expression profiles of primary human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BVECs) and identified four BVEC signature and two LEC signature miRNAs. Their vascular lineage-specific expression patterns were confirmed in vivo by quantitative real-time PCR and in situ hybridization. Functional characterization of the BVEC signature miRNA miR-31 identified a novel BVEC-specific posttranscriptional regulatory mechanism that inhibits the expression of lymphatic lineage-specific transcripts in vitro. We demonstrate that suppression of lymphatic differentiation is partially mediated via direct repression of PROX1, a transcription factor that functions as a master regulator of lymphatic lineage-specific differentiation. Finally, in vivo studies of Xenopus and zebrafish demonstrated that gain of miR-31 function impaired venous sprouting and lymphatic vascular development, thus highlighting the importance of miR-31 as a negative regulator of lymphatic development. Collectively, our findings identify miR-31 is a potent regulator of vascular lineage-specific differentiation and development in vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

Mirtron microRNA-1236 inhibits VEGFR-3 signaling during inflammatory lymphangiogenesis.

OBJECTIVE Vascular endothelial growth factor receptor(VEGFR)-3 is a critical regulator of developmental and adult vasculogenesis and lymphangiogenesis through its interactions with select members of the VEGF family. The goal of this study was to investigate how VEGFR-3 expression is regulated during inflammatory lymphangiogenesis. METHODS AND RESULTS In this study, we present for the first ti...

متن کامل

MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23

Objective(s): Vascular calcification is one the major characteristics in patients with various types of chronic inflammatory disorders. MiRNAs have been shown to be involved in many normal biological functions as well as diseases; however, their role in vascular calcification has not received much attention. Materials and Methods: In the current study, we built a vascular calcification rat mode...

متن کامل

In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies

Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...

متن کامل

Junb controls lymphatic vascular development in zebrafish via miR-182

JUNB, a subunit of the AP-1 transcription factor complex, mediates gene regulation in response to a plethora of extracellular stimuli. Previously, JUNB was shown to act as a critical positive regulator of blood vessel development and homeostasis as well as a negative regulator of proliferation, inflammation and tumour growth. Here, we demonstrate that the oncogenic miR-182 is a novel JUNB targe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 30 14  شماره 

صفحات  -

تاریخ انتشار 2010